INF 221, Software Architecture
Homework Part 1 & 2

2/13/2013
Lunar Lander Architectural Modelling

Program overview: Our version of a “Lunar Lander” game that is significant, multi-player, and
networked is conceived in the vein of a 2-dimensonal, top-down viewpoint multiplayer spaceship
shooter game (working title: “Super Asteroid Melee”).

This version of Lunar Lander is designed for a minimum of 2 players, and a maximum of 4
players. Players take on the role of Spaceship captains. Each Spaceship captain’s objective is to use his
ship’s weapons to fire at and destroy the other captains’ ships—the last man standing is the winner. To
make the game more “interesting”, the game field will also be host to floating Asteroids, which the
Spaceship captains must attempt to maneuver around while battling. Crashing into an Asteroid will
damage the player’s ship, bringing them closer to death.

Spaceships will be capable of firing multiple weapons, and will also have shield capabilities to
protect them from other players’ weapons and Asteroid collisions. Random powerup nodes will spawn
on the battlefield during play. Picking up a powerup will reward the captain with a weapons upgrade,
shield bonus, or extra health points (depending on the type of powerup).

Additional difficulty is introduced by adding Transportation vehicles (the Magic School Bus, for
example). Transportation vehicles have no weapons and cannot damage players’ spaceships. However,
shooting an innocent Transportation vehicle will penalize the offending captain, resulting in a loss of
health points. This element is primarily intended to keep players from constantly “mashing” their firing
button(s).

Architecture description languages used: We choose to use the xADL architecture description language
(because it was required), the ACME architecture description language (because it has better tool
support than AADL—which was suggested for use, but we found to be difficult to work with), and UML
(because we are most familiar with it).

High-level design decisions: We chose to model our Lunar Lander game as a browser-based game. This
was based on our desire to create something fun, that also takes advantage of some of the newest
capabilities of HTML5; something we both wanted to learn more about while doing this project.

As a browser-based game, Lunar Lander uses the architectural style of client-server. One of the
defining characteristics of our initial architectural model is the choice to use the WebSocket API for
communication (aka as a connector) between client(s) and server. WebSocket is an APl specified by the
W3C that enables Web pages to use the WebSocket protocol (defined by the IETF) for two-way
communication with a remote host.

! http://dev.w3.org/html5/websockets/



The motivation for using WebSockets is to avoid the traditional o serhead associated with the
request/response paridigm of HTTP, which generally makes it unsuitable for low latency applications
with a significantly real-time component. In simple terms, a WebSocket creates a persistent connection
between client and server, through which both parties can s :art sending lata at any time.

ither strategies for dealing with latency-sensitive a plications on the Web include polling,
sending ITTP request; at regular intervals, or potentially one long pollin ; session, where the client
opens an HTTP conne :tion to the server, and the server kee 1s the connection open until sending a
response. However, any such workarounds that use HTTP s ffer from one common limitation: the HTTP
headers they use, whi:h frequently contain unnecessary or duplicate information. WebSockets are
superior in this regard; once the client establishes a connection with the erver, information can be sent
bi-directisnally over a single “socket”, full-duplex connection.

Using WebSockets as connectors therefore leads our architecture to also have elements of the
event-baied architect iral style; JavaScript event handlers ar 2 used to determine the appropriate
response to messages sent between the client and server, which may be -eceived at any time while the
connectin is established.

XADL model: The architecture model in xADL is shown below. There are two main views: the firstis a
high-level view of the whole Web Application as a top-level .omponent. Inside this componentis a
subcomponent showi g the components of Server, and browser-based clients, and the connectors
between them, the WeabSocket connections. This view is very similar to the version of Lunar Lander
shown in Figure 4-12 Hf the textbook; both are multiplayer applications in the client-server style.

erver: Game State,
Game Logic,
Environment
Simulation

ﬁ
WebSocket API:

WebSocket API: WebSocket API: WebSocket API:
Event-baszed Event-based Eventbased Eventbased
mewa&a’ng mes.saqe_fa.s.ﬂing nlessa%‘nasa'ng me&saqe_fba.sa’ng
L | L J J

Client 1 - Web
Browser:
Get/Display Info,
Graphics
Processing

Client 2 - Web
Browser:
Get/Display Info,
Graphics
Processing

Client 3 - Web
Browser:
Get/Display Infa,
Graphics
Processing

Client 4 - Web
Browser:
Get/Display Info,
Graphics
Processing

Figure 1. Lunar Lander Web Application Modelled in xADL




This diag ‘am shows the division of responsibilities for the ga ne: the Server maintains the game state,
impleme 1ts the game logic, and simulates the battlefield environment (including the creation and
moveme 1t of Asteroi Is and Transportation vehicles). The Clients get and display information from the
Server, a1d are respo isible for performing the graphics processing and p ‘esentation. Clients also send
message . to the Server regarding their movement and weapon firing commands using the same
WebSocket connection.

The seco 1d xADL view models the WebSocket connection between Client and Server (there will be
between 2-4 such connections when the game is being played, dependin ; on the number of players who
have joinad the game).

DOM Window; client's
browser

L
L

L WebSocket object

L
L

{1 Server; e.g. Node.js

Figure 2. WebSocket connection modeled in xADL

This diag ‘am shows the nature of the connection between client and server. The client is a DOM
Window »bject, available to JavaScript code on a WebSocket-compliant browser (i.e. recent versions of
Chrome, Firefox, IE 10 or Safari 6).2

The client initiates a connection by creating a WebSocket object, which will automatically
attempt to open the connection to the server.? If the conne :tion is successful, the client will be able to
send asy ichronous m 2ssages to the server. These messages can be sent as Strings, Blobs,
or Ar ‘ayBuffers. Complex messages can be created by encoding them using JSON.

The server’s r :plies are handled via the event-based WebSocket \PI by delivering a “message”
event to :he client’'s onmessage function. Two-way com aunication ¢ in thus continue until the client
closes th : WebSocket connection by calling close ().

UML Model: The architecture model in UML is shown belo . There are ‘hree UML views: the Class
Diagram view, which shows the elements of the game software in an Obj act-Oriented paradigm, a
Sequenc : Diagram, which shows the sequence of operations and interactions between components
involved in starting and playing the game, and a Use Case Di igram, which shows at a glance the high-
level fun ttionality provided by the software.

The UML Clas ; Diagram is shown below. Note the S »aceShip class, which represents the game
object controlled by players (Spaceship captains) via the bro nser. The G meEngine class represents the

? https://developer.mozilla.org/en-US/docs/WebSockets
* https://developer.motzilla.org/en-US/docs/WebSockets/Writing_ WebSocket_client_applications



portion of the Server responsible for maintaining game state and logic. Part of the environment

simulation includes the Asteroid and Transportation classes. The BoosterPack class and its’

specializations represent the powerup items that spaceship captains may pick up to boost their

firepower and defenses; the Armory class models the stockpile of weapons a player has accumulated.

Space Ship

Space3hips are controlled by players
healthPoints

shield

shoat
move
useBoosterPack
switchWeapong

Armory  pl—

damage
collide
disintegrate
13
14
Game Engine
mode
difficulty
generateAsteroids
generateVessels
generateBoosterPakes
Weapon
1.%|damageCount
ammoCount
type

Asteroid

size

Transportation

healthPoints

Figure 3. Lunar Lander Class Diagram

move
blowUp

£.0. The Magic School Bus
- shooting these causes SpaceShips damag

]

BoosterPack

AmmoPack
—| T

count
boostAmmo

InvisibilityPack

duration

boostRandom

duration
golnvisible

L

HealthPack

value

boostHealth

J,

L

ShieldPack

GoldenGunPack

value

value = MAX_VAL

boostShield

boostDamage

The UML Sequence Diagram is shown next. This shows the sequence of actions and communications

required to start up and play the game. First, players connect to the Server and choose to join the

game. The game supports 2-4 players. Only a single game can be played at a time; if a player attempts

to join a game that is already in progress, the request will be denied and the player disconnected from

the server.

Once the players have joined the game, a notification is sent to each client to begin the game

and enable players to enter movement and combat commands. These commands are sent over the

WebSocket connection to the Server and processed by the Game Engine; the Server then updates the

game state based on the previous game state, the game logic, and the received player commands. The

updated game state is pushed back to the clients’ browsers, which then update the player’s view.

This same basic sequence continues until the game ends — when only one spaceship captain is left alive!



Players \Web Server Game Opponents
Browser . Enaine Browser
1 | |
I 1
Join Game ! !
- 1
1
Confirm player " ‘ :
i 1
I 1
: 1
P Join Game
‘ F Confirm player
I
I

I

I

I

I

I

I

I

I

I

:

| Begin game play

\_‘ Begin game play

|

‘ |
D Issug actions|/ commands

;

|

|

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Issue actions / commands

i
\

Process Events
|

T 1

1

Update game state |
1

\_‘ Update game slal¢

i

1

I 1

I 1

Update game state

Update status /view Update status /view

Figure 4. Lunar Lander Game Play Sequence Diagram

Finally, the UML Use Case Diagram is shown. The Use Case Diagram is used to show all of the system
functionality at a glance. This diagram does not show the detailed step-by-step sequences of actions
required to realize each of the Use Cases. Its purpose is to show high-level descriptions of the system’s
functionality, as well as the relationships between “actors” involved in each operation.

For Lunar Lander, the Use Case Diagram shows at a high level only the “Client” and “Server”
actors, and the functions they are involved in.

The Client can create a WebSocket object to communicate with the Server (or display a connection error
in the event of an unsuccessful connection attempt), send messages to the server, process event
messages received from the server, and close the connection to the server.

The Server can receive and connect the WebSocket connection, process messages from the client(s),
and return messages to the client(s).



WebSocket connections facilitate interaction between players' browsers and the sewe?‘

Create WebSocket object

Connect WebSocket using specified protocol(s)

% Server
:‘\\\ Return & display connection error

DOM Window

Send data to server

Messages can be sent as strings;Blabs, or A\rrayBuﬁersT

Close connection

Figure 5. Lunar Lander UML Us 2 Case Diagram

ACME m)del: The ACME model is shown below. There are three ACME riews: the high-level view,
which shws client and server, as well as the connection bet veen them, 1 more detailed view of the
client co nponent, an | a more detailed view of the server component.

Server
Client_D

websocket

Figure 6. Client-Server connection vi ‘w Modeled in ACME



The ACME client-server connection view is shown above. This view focuses on the connection
between the server and a single client; note the single connector between them (the WebSocket
connection) and its consistency with the other architectural views.

More detail about the nature of the client side of the application can be seen in the ACME client
view below. This view is used to model and show the nature players’ interaction with the game; as
spaceship captains, they use the keyboard and mouse of their computer to send input commands to the
browser. Layout engine software is used by the browser to allow the browser to render and show the
game to the player: WebKit®, shown in the example below, is used by the Safari and Chrome browsers,
while IE uses Trident’ and Firefox uses Gecko®.

[

. Client-Side:
Ut input
’ UIWebKit

Figure 7. Client-side view Modeled in ACME

Similarly, more detail about the nature of the server side of the application can be seen in the
ACME server view. This view shows the nature of the server: four ports, each of which can be used to
connect a single WebSocket connection with a player, a Game Engine component, to maintain the game
state and rules / logic, and a clock to synchronize the system. The internals of the Game Engine
component shown in this view make up much of the UML Class Diagram shown above.

(o= ] Server-Side:

i — clock
! o Game Engine
. Four ports

* http://www.webkit.org
> http://msdn.microsoft.com/en-us/library/aa741317.aspx
® https://developer.mozilla.org/en-US/docs/Gecko



Assessment of the modeling experience: Initially, this process seemed somewhat foreign to us. As
software developers, often our first instinct when embarking on a new project idea is to put together
something in code, no matter how small, to start to think about how it works. Then, generally after
some time “building” in code, thinking about how things fit together, we might try to engage in activities
more readily described collectively as “software architecture”. Matt says, “In the past, | used to dive
into coding projects and proceeding in a linear manner—coding the first view that users would see, then
the next, and so forth. For this assignment, it was a new experience to design an architecture from a
high level first.

Forcing ourselves to think in a top-down manner and not get too far ahead in planning specific
implementation details was difficult. This is probably primarily due to a lack of comfort and familiarity in
engaging in this process. Reflecting on this exercise, we feel more comfortable with what the concept of
software architecture is, because we have experienced some small engagement with it, rather than just
reading one of the many definitions available in textbooks and on the Web. It is also fair to say that we
are both sure that we will approach our next software architecture project with increased confidence,
based on the experience of engaging with this one.

Being forced to use three different architecture description languages and associated modeling
tools, we can see that it’s almost certainly true that no one language or tool is perfect for every project
(or even perfect for a single project). Each has its own strengths and weaknesses. Just as is the case in
selecting a programming language, it's OK to have a “favorite” or a go-to choice, maybe the one you are
most familiar with, but it also seems prudent to be open to the possibility that perhaps something new
might be better suited to the particular task at hand. You shouldn’t code everything you do in Java just
because you are “a Java guy”, and you probably shouldn’t only use UML to do your software
architecture activities just because it’s the only thing you know. Also, while three architecture
description languages seemed like a lot to have to consider when we started the project, it’s clear that
there are many more that have developed and are being actively used — we switched from AADL to
ACME, but we know other students used Rapide, we learned about C2 from the textbook, and we found
an even longer list of ADLs posited as potential candidates for “best” ADL on Wikipedia.’

UML was the only one of the ADLs we used for this assignment that we had previous experience
with. When someone in class asked if we had to use all 13 of the UML diagrams available for this, we
were wondering exactly the same thing. This, | think is one of those two-edged sword aspects of UML
specifically. It's great that UML 2.0 has been expanded to the point where almost any aspect of a
software system you could wonder about can be described by at least one of the standard UML
Diagrams. But at the same time, it becomes an issue because no one seems to agree on when any of
the specific diagrams should be required for a particular system, or how many diagrams is “enough”,
even though people tend to have expectations about these things. This creates issues in communication
focused on these external issues, and draws focus away from the software system itself. This leads us to
the reflection that accepting that UML (or any other ADL) may not be able to, or might not be the best
way to comprehensively describe or show everything there is to know about a software system may be

7 http://en.wikipedia.org/wiki/Architecture_description_language



the best course. Thinking about our modeling efforts in this way made it easier to accept that all of our
models are designed to be complementary, and “The Software Architecture” is really described by the
totality of the models, not any one model individually.

One thing we found reassuring when starting to do this write-up about our experience was our
desire to include a section talking about and explaining the principal design decisions we made about
our system. We felt that if this concept was as important to understanding what software architecture
is as the first lecture suggested, we must be on the right track. Of these, our intent to use the
WebSockets API as our software connector between the client’s browser and the game server really
stood out as the most important and fundamental property of our system. Before we started the
project, we decided to use a Google Doc to keep track of the notes we made during our joint
brainstorming sessions and to share notes about our individual experiences. From this documentation,
we can trace the origin of this key design decision:

“For our multiplayer game, we quickly arrived at the client-server model since it has proven to
be an effective model in the past for many successful games. Given that it was a multiplayer
game, one significant aspect is updating the views when one player does something on his
screen; all the other screens should be updating as quickly and efficiently as possible, so the
other players may respond appropriately in the game. As a result, we discovered HTTP requests
were not good enough or even designed to handle live and frequent information exchange. Our
investigation led us to techniques that others have used, such as polling or long polling and
server-side event-driven techniques. Still, these techniques and workarounds had severe
limitations. For instance, polling at regular intervals assumes that information comes in at the
same time, but that is not the case. Long polling connections may get terminated after a time-
out, too.

Luckily, HTMLS is breaking through and one of its native features is WebSockets. This was the
perfect solution for our connectors and communication. Because of WebSockets, the size of
data packets is reduced from kilobytes to 2 bytes and latency can be reduced from 150ms to
50ms.”

Having this source of documentation made it easier to produce this report, and we think makes it easier
to trace our thinking over time. Looking back at what we wrote when we first decided to use
WebSockets makes it easier to assess now whether we still think that’s the right decision after engaging
in the modeling exercise (we do).

Tackling the latency issue reminded Matt of a lecture he attended at Twitter, Inc. last summer.
The talk was about the architecture of Twitter and how they deal with billions of tweets. Specifically,
the speaker talked about Lady Gaga and her 34 million followers. When Lady Gaga tweets about her
day, the architecture cannot afford to push the tweet directly to the 34 million followers. As a result,
the Twitter architecture is built such that the tweet only gets pushed to her followers when they next
log in via the web or mobile apps. This prevents inactive or casual Twitter users from consuming large



amounts of bandwidt 1 unnecessarily. This example highligh:s how we al vays relate architectures we
build to t1ings we already know about.

if course, we experienced a few quibbles with the t >ols we used to do the modeling. For
modeling UML, we us :d the Violet UML editor. Violet is nice because iti a very small Java program that
can prod ice decent-l oking UML diagrams quickly and easil . It is simple to get started with and learn.
However, it is somew 1at limited on features. For example, there is no capability to draw dashed lines
around a group of classes in the Class Diagram to indicate w iich host the y might run on.

/e used ArchStudio 5 to model using xADL; this req lired the extra step of downloading a newer
version of Eclipse (4.2 Juno, previous install was 3.7 Indigo). One thing that was unclear when first using
ArchStudio was how t> actually connect links. Initially, links added to an \rchipelago diagram using just
components look like they are connected; it was only after adding interfaces to the model that it
became clear how to :onnect them. The green highlighting 1sed in Archiselago was helpful for
reinforci ig this idea.

Finally, we initially tried to use AADL to create one of our models, but struggled with installation issues
and the fragmentatio 1 of AADL support and examples. Matt is working on getting a refund for the AADL
textbook he bought. Instead of using OSATE and AADL, we opted for Ac 1e and the AcmeStudio
software developed a: Carnegie Mellon. The user interface was friendlie - and the tutorials were clear
and easy to follow.

|| % Navigator 51 = 0 5 ClientServer.acme ﬁm!' date.acme 1. ins)
I
= | fAcmeLab/simple-pf-complere.acme

import fowilies/UniPipeAndFilter.ocme;
vid
S Acmelab system simple-pf : UnixPipeAndfilter = new Unix*ipeAndFilter extended with {
s compoment Input @ FileSystesSoureeT = new FiliSystesSourcel extended with [
* = families port output : FilterDutputPortT - new FiltardutputPortT;
acmeproject property path = "/hose/user/data/®";
project
h

Bl simple-pf-complete.acme
simple-pf-complete. mtd

Bsimple-pl.acme
simple-pf.mtd

i Bial and Matt's Infinite Playlist

= families
acmepraject
project

HH ClientServer.acme

| 5 Outline 11

component Capitalize : UnixFilterT = mew UnixFilterT extended with {
port stdout © UninfilterOutputPortT = new UnixfilterOutputPortT extinded with {
rule nollangling = inmveriant ottechedOrBound(self);
rule comectedOnlyTolnputRoleT = imoriant foroll r : Role in self ATTACHEDROLES |
declaresTypelr, InputRoleTd;
rule datalnfoles = invariont forgll r in self.ATTACHEDROLES |
declaresType(r, DatolnRoleT);

L
port stdin ¢ UniafilterInputPortT - new UnixFilterInputPortT extended with {
rule noflangling = imvariant ottochedOrBound(self);
rule comectedlnlyTodutputRoleT = invarlont forall r : Role in self ATTACHEDROLES |
declaresType(r, OutputRoleT);
rule datalutRoles = imveriont forgll r in self ATTACHEDROLES |
decloresTypelr, DatoOutRoleTd;

* 8 simple-pf '
property gad = “jeva -jor Shomeluser
representotion Copitalize Rep = {
systes Copitalize_Rep : PipeAndFilte-fom = new PipeAndFilterfom extended with {
component Split : FilterComeT = mmm FilterCospT extended with {

port input : FilterlnputPertT - nem FilterlnputPortT;
part cutput : FilterDutputPortl = new FilterDutputPortT;
port outputd : FilterDutputfortT = new FilterOutputPortT;

h
component Upper : F

terCompT = mew FilterCompT extended with {

| Overview | Acme Source | simple-pf |

Properties I + Tases |2 Problems - T o E

Properties are not available.

Figure 9. AcmeStudio User Interface »n Mac OS X slatform



]
]

INF 221, Software Architecture
Homework Parts 3,4 & 5

3/6/2013
Super Asteroid Melee Implementation

Program update: Our version of a “Lunar Lander” game that is significant, multi-player, and networked
was originally conceived in the vein of a 2-dimensonal, top-down viewpoint multiplayer spaceship
shooter game (working title: “Super Asteroid Melee”).

In the process of implementing Super Asteroid Melee we made an important (architectural,
even) decision that slightly changed the nature of the game itself: to save ourselves the trouble of
implementing a large amount of code to deal with the orientation of the spaceships, and the trajectory
of the projectiles they fired, we redesigned the core game concept, but kept the same theme.

Instead of having players pilot spaceships and attempt to kill each other, we changed Super
Asteroid Melee so that players join the game as teammates, forming a squadron of spaceship captains to
coordinate their efforts and destroy waves of asteroids that fall towards them.

What this did for us was simplify the physics we would have to simulate.

All player spaceships are now oriented in a north-south orientation, facing the top of their browser
window. When they fire projectiles, their weapons are released and travel in a straight line pattern.
The asteroids fall from the top of the screen toward the squadron of players.

Shooting an asteroid with a projectile will destroy both the asteroid and the projectile.

If a player collides with an asteroid, his ship explodes and he dies.

An extra level of difficulty and fun is added by having the players cooperate as teammates. We
added a game mechanic whereby players can be destroyed not just by collisions with asteroids, but by
colliding with player-fired projectiles as well. This creates the concept of friendly-fire deaths.

We liked this idea because it can act as a deterrent to the player from always using the strategy of firing
constantly — after we started testing the game we felt that limiting players’ firing rate or available
ammunition just wasn’t as much fun, so the friendly-fire concept creates another level of difficulty and
addresses this concern. Of course, once players encounter the friendly-fire idea, we fully expect that
some of them will adopt a strategy of intentionally firing on their “teammates”, trying to kill them “for
the lulz”. This is great because it opens up the game to support multiple play styles.

This original conception of our game was designed for a minimum of 2 players, and a maximum
of 4 players. This seemed like a good number to limit an overhead-battle scenario to, and we felt like it
would limit the level of difficulty in implementation for us.

One of the things that using HTML5, WebSockets, socket.io and Node.js bought us though is
simplicity in coding for additional players joining the game, using our top-to-bottom screen orientation.
Because of this, the final version of Super Asteroid Melee has no software-limited cap on the number of
players: theoretically, and number of players can continue to join the game and play simultaneously.



We tested with as many as six players by running the client code in separate browser tabs during
development.

A single-player version of Super Asteroid Melee is actually possible, as implemented. There is no
qgueuing or “lobby” mechanism that requires two players to join the game before it can begin. Players
join the game by pointing their web browser to the page hosting the game, and are connected
immediately. The other players already in the game are notified of the presence of the new player by
means of event propagation through socket.io — a JavaScript software library designed to be used as a
module added to a server running Node.js, and implementing the HTML5 WebSocket API. A similar
chain of events handles player disconnects.

The level of difficulty for the squadron of spaceship captains is scaled automatically: as more
players join the game, the number and frequency of asteroids that rain down on them increases. This is
accomplished by having each connected client run a loop asking the server to create an asteroid on a
timer. So while a single player can play the game alone, it is actually much more interesting to play with
a few friends!

Some of the concepts from our original design were pared down, due to time constraints.
Instead of keeping track of how much “damage” has to be done to asteroids or players to destroy them,
all collisions result in instant death.
The random powerup nodes were dropped as well, in the interest of time.
They could be added without major difficulty given additional time. The logic for spawning, moving, and
collecting them would be very similar to the logic for the asteroids, but would produce different effects.
The idea of the Transportation vehicles (the Magic School Bus, for example) as a way to keep
players from constantly “mashing” their firing button(s) was replaced with the friendly-fire concept —
the possibility of shooting and killing teammates acts as a similar deterrent (or motivation, depending on
the player’s mindset) instead.

Implementation languages and tools used: The main web page that hosts the game is written in HTML
5. The server component runs Node.js, a server-side software system designed for writing scalable
Internet applications, notably web servers. Programs are written on the server side in JavaScript, using
event-driven, asynchronous 1/0 to minimize overhead and maximize scalability." The socket.io library
implements the WebSocket APl and provides additional features like heartbeats, timeouts, and
disconnection support.? Clients connect to the server by visiting the web page hosting the game using a
web browser; that HTML page loads and invokes JavaScript files that contain the client’s portion of the
game logic.

High-level design decisions: We recap here our most important design decisions from Parts 1 + 2 for
reference, and because these are the components that we chose to focus on when trying to provide
evidence that the implementation and the model(s) are consistent.

1. The architectural style of client-server.

! http://en.wikipedia.org/wiki/Node.js
? http://socket.io/#faq



2. The use of the WebSocket API for communication (aka as a connector) between client(s) and
server. WebSocket is an APl specified by the W3C that enables Web pages to use the
WebSocket protocol (defined by the IETF) for two-way communication with a remote host.>

3. Anevent-based architectural style; JavaScript event handlers are used to determine the

appropriate response to messages sent between the client and server, which may be received at
any time while the connection is established.

XADL model: The updated architecture model in xADL is shown below. There are two main views: the
first is a high-level view of the whole Web Application as a top-level component. Inside this component
is a subcomponent showing the components of Server, and browser-based clients, and the connectors
between them, the WebSocket connections. This view is very similar to the version of Lunar Lander
shown in Figure 4-12 of the textbook; both are multiplayer applications in the client-server style.

Node.js Server:
Game State, Game
Logic, Emvironment

Simulation

I

socket.io: Process and
route incoming events, route
or hroadcast outgoing
events. Also heartbeats,
timeouts, and disconnect

support.
.._..E/E —
o . -
WiehSoe ket API: WiehSoe ket API: WiehSoe ket API:
Even-hased Even-hased Even-hased
Mese fassing Mese fassing Mese fassing
/D /D h
Client 1 - Weh Client 2 - Weh Client n - Web
Browser: Browser: Browser:
Get/Display Info, Get/Display Info, Get/Display Info,
Graphics Graphics Graphics
Processing Processing Processing

Figure 1. Updated — Super Asteroid Melee Web Application Modeled in xADL

® http://dev.w3.org/html5/websockets/



This diagram shows the division of responsibilities for the game: the Server maintains the game state,
implements the game logic, and simulates the battlefield environment (including the creation and
movement of Asteroids). The Clients get and display information from the Server, and are responsible
for performing the graphics processing and presentation. Clients also send messages to the Server
regarding their movement and weapon firing commands using the same WebSocket connection.

The diagram has been updated by adding a new component, the socket.io library. Socket.io is
installed as a module for the Node.js server, and acts as an intermediary between the clients and the
server. Its main function is to process and route the event messages exchanged between the clients and
the server. Socket.io provides a simple interface to enable the server component to route an event
message to a single connected client, or to “broadcast” a message to all other connected clients.
Socket.io also provides some additional functionality, in addition to the WebSocket API: it also handles
heartbeats, timeouts, and automatic disconnection for the server.

Finally, this diagram has been updated to reflect the variable and unbounded number of clients
supported. Instead of Client 1 through Client 4, Client 3 has been removed, and the final Client
component labeled as “client n” to indicate this.

The second xADL view models the WebSocket connection between Client and Server (instead of just 2-4
such connections when the game is being played, there are now any number of these connections, one
for each player who has joined the game).

DOM Wind client's

1 T ket connection object (] [] Server; e.g. Node.js

browser

Figure 2. WebSocket connection modeled in xADL

This diagram shows the nature of the connection between client and server. The client isa DOM
Window object, available to JavaScript code on a WebSocket-compliant browser (i.e. recent versions of
Chrome, Firefox, IE 10 or Safari 6).4

The client initiates a connection by creating a WebSocket object, which will automatically
attempt to open the connection to the server.’ If the connection is successful, the client will be able to
send asynchronous messages to the server. These messages can be sentas strings, Blobs,
or ArrayBuffers. Complex messages can be created by encoding them using JSON.

The server’s replies are handled via the event-based WebSocket API by delivering a “message”
event to the client’'s onme s sage function. Two-way communication can thus continue until the client
closes the WebSocket connection by calling close ().

This diagram has been updated to reflect the addition of socket.io, which acts as a wrapper
around the WebSocket APl and an intermediary in this communication.

4 https://developer.mozilla.org/en-US/docs/WebSockets
> https://developer.mozilla.org/en-US/docs/WebSockets/Writing_WebSocket_client_applications



Consistency in the xADL Models: The important aspects of the system captured by the xADL models are
1. The architectural style of client-server, and
2. The use of the WebSocket API for communication between client(s) and server.

The bulk of the server-side game logic is contained in the game.js file.
/ core game wvariables

var =socket, S/ socket controller

players, // array of connected players
projectiles, [/ array of projectiles
asteroids; [/ array of asteroids

// initialiration function
|function init({) f{
' set the players wvariable to an empty array
players = []1;
f set the projectiles wvariable to an empty array
projectiles = []:
' set the asteroids wvariable to an empty array

asteroids = []-
f get the socket zerver listening on a port (8000):
gocket = io.listen(3000) ;
f 1limit Socket.I0 to using WebSockets (and not falling back to anything else}.

/{ cut down on the volume of output Socket.I0 sends to the terminal.
socket.configure (function() {

gocket.set {"transports", ["websocket™]}:
gocket.set{"log lewvel™, 2}
|3
f start listening for events

getEventHandlers () ;
Figure 3. game.js server initialization code

In the initialization function of game.js, we see how the server sets up to listen for incoming client
requests on a specific port (port 8000) using a call to socket.io (io.listen). The server is then able to
initiate all future communication with its clients through the socket variable, which acts as a socket
controller.

The configuration of the socket controller also restricts communication to ONLY using the WebSockets
transport (protocol). If a client attempts to connect and interact with the server through the socket
controller and does not support WebSockets (i.e. a mobile browser or older version of Internet
Explorer), the communication requests will fail, and the web page will not load.

Although Socket.IO supports multiple transports, and will automatically fall back to Adobe Flash sockets,
JSONP polling, or AJAX long polling if the client supports those transports®, we have chosen to explicitly
configure our socket controller to only support WebSockets. This supports our architectural modeling
and our architectural ideal of ensuring low latency for our game, which requires a near-real-time

® http://en.wikipedia.org/wiki/Socket.io



component that can be provided by the lower overhead associated with WebSockets, when compared
to other transport protocols which operate on top of HTTP and require full HTTP headers.

The bulk of the client-side operations are also contained in a matching game.js file.

function init() {

/ Declare the canvas and rendering context
canvas = document.getElementById{"gam
ctx = canvas.getContext("2d4");

/ Maximise the canvas
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

Initialise keyboard controls

keys = new Heys ()

I i

Calculate a random start position for the local player

The minus 5 (half a player size)} stops the player being
/ placed right on the egde of the screen

var startX = Math.round(Math.random() * (canvas.width-5})),
startY = Math.round{Math.random() * {canvas.height-5}}) :

Initialise the local player

localPlayer = new Player(startX, startY):;

/ connect to a Socket.If server.
/ the first parameter specifies the =server address (localhost for now) .
/ if we want te point this at ancother server for a demo, need to replace 'localhost' with the

ff external IP of the server:

=t', {port: 8000, tramsports: ["w

gocket = io.connect ('ht oc a
/ 34 wvice localhost to connect to a HNode insta

i.e. 169.234.24.1

Figure 4. game.js client initialization code

In the initialization function of game.js, we see the other side of the WebSocket connection being set
up. The client sends a connection request to the server on the specified port (port 8000) using a call to
socket.io (io.connect). The client is then able to initiate all future communication with the server
through the socket variable, which acts as a socket controller.

The optional transports parameter specifies only the WebSocket transport protocol should be
used for this connection. Thus we have ensured that our client and server can communicate, and that
they can communicate exclusively using WebSockets.

UML Model: The architecture model in UML is shown below. There are three UML views: the Class
Diagram view, which shows the elements of the game software in an Object-Oriented paradigm, a series
of Sequence Diagrams, which show the sequence of operations and interactions between components
involved in starting and playing the game, and a Use Case Diagram, which shows at a glance the high-
level functionality provided by the software.



The updated UML Class Diagram is shown below. The significant changes include removing the
BoosterPack class and its specializations, since we decided not to include Booster Packs in the game due
to time constraints. The Transportation class was also removed. The class we called GameEngine in the
original UML model is now called the Game class, but largely serves the same purpose — maintaining
game state and simulating the environment.

[~
SpaceShips are controlled by Game
lavers T
SpaceShip ctx Asteroid
keys ;
Spaceshipimg localPlayer iﬁsfgsédlmg
Ic:gRerSpaceShmlmc 1.* rE""_mE_F"a‘F’ETS ySpeed
update projectiles 1. |aNum
draw asteroids init
drawSelf socket get_aNum
fire setEventHandlers update
onKeydown draw
onkeyup gety
onkeypress ety
onResize
. onsocketConnected
L.. startAsteroidLoop
Projectile un;ccklfltDiscunnect
onMewPlayer
bulletimg chouePI:rver up Keys
X onFirePlayer left
Y onRemovePlayer right
umpDJ;;tmDunt onMewdAsteroid down
draw onRemoveProjectile space
onYoureDead onkeyDown
onYoureDeadFriendlyFirg onkKeylUp
playerByld onkeypress
animate
update

Figure 5. Super Asteroid Melee Class Diagram

The UML Sequence Diagrams are shown next. The original sequence diagram showed the sequence of
actions and communications required to start up and play the game, but the implemented functionality
is quite different than originally modeled. Here is the updated sequence diagram.

Note: We have left out the analogous Client WebSocket controller Object Lifeline for the Opponent’s

Browser (shown on the right) from these diagrams for the sake of simplicity and readability. In reality,
there are such WebSocket controller objects for each client in the system, but they perform the same

message-routing duties as the controller connected to the Player’s Browser (shown on the left).



Clignt Server
|WebSocket WebSocket
ontroller ontraller

Players

Browser
'
1
'
1
1
'
1

'
'
connect to server (line 52) ' :
'

Node js Cpponents
lBenver Browser

connectto server i
player has connected (line 209)
I
I

player has connected (line 220)

notify other players of new player (line 214,

player has connected

create and store existing player(s) data (line 161)]

player has connected

create and store new player data (line 161)

Figure 6. Game Join Play Sequence Diagram

Consistency in the model and implementation:

To trace the consistency between this UML model and the implementation, we can trace the sequence

of commands and the associated source code that execute them:

1. The player’s browser sends a request to connect to the server when loading the index.html web

page.

This request is executed on line 52 of the client’'s game . js file:

s
oo

LR

IC server.

/ connect to a Socket.

the first parameter specifies

if we want to point this at another server for

external I

socket = io. 'y {porc:

the server address

m

{localhost for now) .

a demo, need to replace 'localhost' with the

transports: ["web=zocket™]});

ct to a Node instance

unning somewhere else

2. The client’s WebSocket controller routes the message to the server’s WebSocket controller. This

triggers the server’'s onNewPlayer callback (line 209 of the server’s game . s file):

BJ B3 RS R PR3 BRI ORI ORI R R R ORI ORI ORI ORI ORI ORI ORI ORI ORI ORI B3 R R ORI ORI ORI R

a newWw player joins the game.

create a new player instance using position data sent by

f/ and store the identification number for future reference.
E function onNewPlayer (data) {
var newPlayer = new Player (data.x, data.y):

newPlayer.id = this.id;

// motify other players of the new player

this.broadcast.emit ("new pla {id: newPlayer.id, =:

/ send existing players to the new player
var i, existingPlayer;
0-

for (i it+) {
eriztingPlayer

thiz.emit ("new p

i < players.length:
players[i]:
ayer™, {id:

existingPlayer.id, =:

f/ send existing asteroids to the new player

var j, nexthAsteroid:
for (3 0; j < asteroids.length;
nexthsteroid = asteroid=[j]:
thiz.emit {("new asteroid”, {x=:
xS5peed: nextAsteroid.getxSpeed(), ySpeed:

j+) |

/ add the new player to the players array
players.push (newPlayer) ;

existingPlayer.getX({), v:

nexthsteroid.getX (), ¥:
nexthsteroid.getySpeed(), =size:

the connected client,

newPlayer.getX(), y: newPlaver.get¥()}):

existingPlayer.get¥ () }):

nexthsteroid.get¥ (),
nexthsteroid.getSize()})



3. Within this callback, the server sends a message to the other connected clients notifying them of the
new player (line 214, using Socket.lO’s broadcast.emit function).

The server also sends a message to the newly connected player for each already-connected client, to
notify the new client of the existence of the other clients (line 220, using Socket.|0’s emit function).

4. Finally, both the new client and the previously-connected clients execute callbacks to process the
event in their own onNewPlayer functions:

' called when a new player is connected
Bl function onMewPlaver (data) {
console.log {("Hew player connected: "ddata.id) ;

[ el
[TV

f create a new player object based on position data sent from the server.

var newPlayer = new Player(data.x, data.y):r
newPlayer.id = data.id;

1

' add the new Player cobject to the remotePlayers array S0 we can access it later.

remotePlayers.push (newPlayer) ;

o M h i o

Ly

The Player Movement Sequence Diagram is shown next. This diagram shows the sequence of events
involved in player movement, from the player pressing on the keyboard to initiate a command, to the
other connected players being notified:

Keyboard Client Server
WASD or Clsvers IWebSocket \WebSocket blodes doponents

Browser [ r— [ pre— Eemver Browser
arrow kevs ontraller ontraller
— .

' I
I
move command !

I ' I I
I ' I I

I ' I I

I ' I I
player has moved (line 269) 1 : : :
I I

' player has moved . '
player has moved
update player position (line 246)

broadcast player position update (line 250)
update player position (line 172)

Figure 7. Player Movement Sequence Diagram

To trace the consistency between this UML model and the implementation, we can trace the sequence
of commands and the associated source code that execute them:

1. The player initiates a command to move his spaceship. This is done by using either the W-A-S-D keys
or the arrow keys (W corresponds to up, A to left, S to right, and D to down). These keyboard presses
are detected by the browser and passed on to a keyboard listener in the client that runs in a loop.

2. The client initiates an event message to the server, indicating that he has moved (line 269). The keys
variable is the return of the function in the Keys class that handles keyboard input:

function updacte() {
send the player position to the server after every update,
/S only if the player position has changed
if {localPlayer.update (keys3})) {
270 socket.emit ("move player™, {x: localPlayer.getX(), ¥:!: localPlayer.get¥Y(}}):

271 }:




3. After the message is routed to the server, the server’s onMovePlayer callbackisinvoked. The
server updates the player’s location (line 246), and broadcasts the player’s new coordinates to the other
connected clients (line 250):

{ called when a player moves
B function onMovePlayer (data) {

/ search for the player that is being moved
var movePlayer = playerById(this.id):

= if ('movePlayer) {
util.log{("Player not

ound: "+this.id);
return;

// update the player's x and y position
movePlayer.setX (data.x) ;
movePlayer.setY (data.vy) ;7

// broadcast the player's updated position to the other players

this.broadecast.emit{"move player", {id: movePlayer.id, x: movePlayer.getX(), y: movePlayer.get¥()}):

~ ki

4. Finally, the other connected clients execute callbacks to process the move event in their own
onMovePlayer functions:

171 // called when a player moves
172 [Elfunction anHQvePlayeﬂ[data] {
173 /f search for the player that is being moved

1
v}

174 var movePlayer = playerById{data.id) ;

176 [ if (!'movePlayer) f{

177 console.log{"Flayer not found: "+data.id):;
178 return;

179 B }:

181 /f update the player's x and vy position
182 movePlayer.setX (data.x) !
movePlayer.setY (data.y) -

184 “}:

The Player Firing Sequence Diagram is shown last. This diagram shows the sequence of events involved
in players firing their cannons, from the player pressing on the keyboard to initiate a command, to the
other connected players being notified. This sequence is very similar to the Player Movement sequence.
The main difference is in the processing required by the server.

In the firing case, the server must create new Projectile objects when the player fires, and must create
event messages to notify both the firing player and the other connected clients of them. Here is the
Firing Sequence Diagram:



Keyboard: Client Senver
WASD or % WebSocket WebSacket E%%;%r”rs
arrow keys ontroller ontraller .

' I
U player has fired
create projectile object (line 256)
broadcast new projectile object (line 259)
send new projectile object (line 264) \J draw projectile to screen (line 187)
send new projectile object U
draw projectile to screen (line 187]

Figure 8. Player Firing Sequence Diagram

fire command !

player has fired (line 274)

player has fired

To trace the consistency between this UML model and the implementation, we can trace the sequence
of commands and the associated source code that execute them:

1. The player initiates a command to fire his spaceship’s cannon. This is done by using the space bar.
These keyboard presses are detected by the browser and passed on to a keyboard listener in the client
that runsin a loop.

2. The client initiates an event message to the server, indicating that he has fired (line 274). The keys
variable is the return of the function in the Keys class that handles keyboard input:

72 / =end the position of a mewly fired projectile,

73 /f only if the player has fired

Fic =] if (localPlayer.fire(keys)) {

75 zgocket.emic ("fire plaver", {x: localPlaver.getX(), w: localPlayer.get¥() - 25}):

1
o

f/ shoot from the fromt of the ship, not the center

and cannon.play():
snd_cannon.currentTime = 0;

r }:

1
wom

R PR3 BRI ORI RD ORD ORI R

3. After the message is routed to the server, the server’'s onFirePlayer callbackisinvoked. The
server creates a projectile object (line 256), broadcasts the projectile’s coordinates to the other
connected clients (line 259), and notifies the client that initiated the command of the projectile’s
coordinates (line 264):

(1]
n
[+1)

=

=i
m

=8
5

S
i
1

..... a player fires a weapon
H functicn onFirePlaver (data) {
f{ we need the x, y coord=s of the firing player to select the initial po=ition

var newProjectile = new Projectile(data.x, data.y):

1 ™ on

8 notify the firing player of the new projectile

9 thiz.broadcast.emit{"fire player”, {x: newProjectile.getX({), v: newProjectile.get¥()}}):
i / broadcast the new projectile to the other players

1 thiz.emit{"fire plaver", {x: newProjectile.getX(), v: newProjectile.get¥{(}}):

3 / add the new projectile to the projectiles array

projectiles.push ({newProjectile) ;

@y &y &y oy ey On LnoLn LnononoLnodn

Ry R3O Rd R ORI R R R RS RYORY R R

Ly:

4. Finally, all connected clients execute callbacks to process the fire event in their own
onFirePlayer functions:



186 // called when a player fires a weapon
18 function onFirePlaver (data) {
188 var newProjectile = mew Projectile{data.x, data.y):

150 // add the new projectile to the projectiles array
181 projectiles.push{newProjectile) ;

192 }:

This same basic communication pattern is used to process all of the events in the system. We have
shown here the player-initiated events that are triggered by user input with the keyboard: the other
primary source of events in the system is a simple 2D collision detection (bounding circle) system that
triggers events based on projectiles destroying asteroids, or players colliding with asteroids or friendly
fire. All of these events follow the same basic communication pattern; the primary difference in the
overall sequence is what actions the server must take to respond to the event appropriately.

The important aspect of the system captured by the UML sequence models is therefore
3. An event-based architectural style.

The UML Use Case Diagram is largely unchanged from the initial model.

Refer to Parts 1 + 2 of the assignment for a discussion of the Use Case Diagram and how it shows all of
the system functionality at a glance.

ACME model: The updated ACME models are shown below. There are two ACME views: the high-level
view, which shows the client(s) and server components and the connection between them, and a more
detailed view of the server component.

&

Game_Servar

[]
]
-

Client_M
Cliant_aA Cliant_B

Figure 9. Updated view of Client-Server connection view Modeled in ACME



The ACME client-server connection view is shown above. This view shows the connection
between the server and a variable number of clients — this is consistent with our updated xADL model
and comes from our decision to change the game and have players join a squadron and work together
to destroy asteroids. Note the single connector between them (the WebSocket connection) and its
consistency with the other architectural views.

More detail about the nature of the server side of the application can be seen in the ACME
server view below. This view has been updated significantly; before, we had modeled four ports, each
of which can be used to connect a single WebSocket connection with a player, a Game_Engine
component, to maintain the game state and rules / logic, and a clock to synchronize the system. The
ports on the server component correspond to client 1, client 2, and ... client n, since the system no
longer has a limit of four players. The Game_Engine component we initially modeled has been replaced
by the actual components on the server side: the game_js component, which does most of the game
logic and environment simulation, the Keys_js component used to process user input, and the
Asteroid_js, Player_js, and Projectile_js components, which encapsulate the logic for each of the major
on-screen classes. The Clock component has been removed too, as we realized the entire system is
event-based and asynchronous — the use of a lightweight transport protocol is used to make the game
as near-real-time as possible, but there is no actual synchronization component to our system.

e

game_js [ ] Asteroid js

]

Projectile_jil L [ ] Keys_ js
L]

Player_js

Figure 10. Updated Client-side view Modeled in ACME



[l Assessment of the Implementation Experience:

Even after having chosen to use HTML5 and WebSockets, which we had found a great deal of
information and thought we understood pretty well, once we set to work on actually using them in code
of our own, there was a definite learning curve involved. One of the biggest obstacles at the start of the
implementation project was figuring out how to install Node.js on a host to act as the server. We were
confused by all of the tutorials we found online, and the number of Platform-as-a-Service (Paa$)
providers who offer to provide Node instances on their own “clouds”, but want to charge you for that
privilege. Eventually, we figured out that our own machines would work just find as Node hosts for a
small number of players, and we were able to move on to focusing on producing code and keeping it
consistent with our architecture models.

Having some previous experience with JavaScript programming, | was comfortable with using it
alongside socket.io, which was new to me. One of the nice things about event-driven JavaScript is that
even though it follows a particular pattern, the freedom to create your own custom events and deliver
just about any data payload alongside them through JSON means that the pattern is both highly
customizable and highly structured. Having an understanding of the working of our code, tracing the
messages in the UML sequence diagram to the source code was very easy to understand.

The consistency argument, then, seemed straightforward when considering our three primary
architectural decisions enumerated above. The biggest updates and reworking that | realized we
needed to do wasn’t even a result of anything we wrote — it was incorporating the socket.io code into
our models and keeping them consistent that way. When we chose to use WebSockets, we were
looking at the raw API, and thinking that we could just use it directly by writing our own JavaScript. As
we read more about what other people who are using WebSockets have done (and particularly people
who were using them to make games), we realized that socket.io was very popular, fit with our initial
architectural decisions, and simplified some of the code we had to write. In retrospect, | think it was a
very good decision to include it in our project. But it does also serve as a reminder that in any project,
you can gain knowledge and insight by surveying everything else that is out there and available, but at
some point, you have to just start.

| feel that our arguments for consistency between our code and our models are actually pretty
strong, and | would be confident in defending them. | think focusing on the connectors, and not just the
components, when beginning to model helped in this regard, and is different than what | have tended to
do in the past on coding projects. When we actually set about to do the implementation, | didn’t feel
that our models were very much help in directly assisting us in writing code. Some of this is probably
attributable to the fact that we chose to keep our models at a fairly abstract level. But | also felt that the
process of producing those models for Parts 1 + 2 of the assighnment was very helpful in guiding
implementation, because doing that work helped me understand much better what we were trying to
accomplish and at least how the software components that we had never used before operated, before
we tried to write our own code.



If I had to do this all over again, | actually think | might use xADL again. Just thinking initially
about abstract components and connectors really helped me understand our project pretty well. Often
what happens when trying to model something that has not been implemented in UML is that | or we (if
I’'m working with a group of developers) focus almost exclusively on the components (it’s hard to break
out of the Object-Oriented mindset when using UML), and the connectors go largely unexamined (and
usually misunderstood). One of our goals in choosing to make a Web application was to become more
familiar with the tools, and | wouldn’t hesitate to try and build something for the browser again —
modern web browsers and the new HTML standard provide a lot of powerful functionality to
programmers, and not having to re-compile everything you write is so nice. On the whole, | did really
enjoy this assignment and | felt like it was effective in trying to apply the ideas about software
architecture that were discussed in class to a small-enough-to-be-manageable but large-enough-to-be-
interesting project.

Il Assessment of the Implementation Experience:

The overall experience was delightful and fun. | had a fantastic time working with HTML5 and
WebSockets to make our game consistent with the architecture. The only difference was that some
features weren’t implemented from our original proposal, such as booster packs to offer a variety of
weapons and health packs. Overall, the best part was making the game as close to real-time as possible
and minimizing the lag during gameplay. Thanks to WebSockets and Node.js, the API offered superior
scalability and synchronicity for many players and rapid screen updates of moving objects.

One of the influential factors that made us alter our game was a user interface issue. We already knew
the arrow buttons would be used to move spaceships around the canvas, and the space bar would be
used to fire weapons. Then we had the problem of how to let users rotate their space ships (because
they were only firing upwards to the top of the screen). As a result, we altered the game mechanics:
instead of players fighting against each other, they work together to survive through an asteroid field
and avoid shooting each other.

The other delightful experience was working with Node.js and HTML5, something on my bucket list for
some time. | was also in charge with setting up a server for us to test our game, and this was a huge
challenge. | tried setting up Node.js on servers at UCl and UC Berkeley, but got stuck because of
permissions. Then | signed up for a free-tier account with Amazon’s EC2 service, but was overwhelmed
with the options. In the end, we used one of our machines as a local host and other devices would
connect to it.

The consistency argument is fairly easy to make since our game uses the classic client-server
architecture where clients connect to a server, and the game play is controlled from the server. Our
implementation abides closely with the model made in all of our software architecture models from
UML, xADL, and ACME. | cannot say | am 100% sure that the code is consistent with our architecture,
but | can say | am 90-95% confident. We are using the right connectors and components, all are linked
appropriately, and more. The only changes made to the model were stripping away certain components



that we didn’t have time to implement. For instance, our original proposal had booster packs to help
players, but we removed that due to time constraints. The model did help us a lot since it guided our
implementation throughout the process. When it came to debugging, we were able to quickly identify
the source and fix it. If we had to do this all over again, | think we would keep things the same as it is,
but add more game physics to make the game more challenging and fun!

Appendix — Stats and Screenshots

Altogether, the system’s code consists of:
e index.html: the webpage that hosts the game.

Four server-side JavaScript files:
o game.js, Asteroid.js, Player.js, and Projectile.js
The Socket.lO node module code.

Six client-side JavaScript files:
o game.js, Asteroid.js, Player.js, Projectile.js,
Keys.js and requestAnimationFrame.js
Three CSS files.

The working system contains 8,520 lines of code (LOC):
e 1332 lines of code written by us
e 7188 lines of code in the socket.io node module package

Figure 11. Close-up view of Spaceship and Asteroids



- o R

@ C\U: Asteroid C i £ + & |[ @ super Asteroid Melee, buit .. A AN

Figure 12. Multiple players connected (the other spaceships are hiding to the right of the screen)

e £ C:\Users\Ka\D: Asteroid Melee\Updated Code\public\i © ~ € || & Super Asteroid Melee, built ..

Message from webpage

You've been killed by an asteroid!
B\ Refresh the page to rejoin the fight!

Figure 13. Our Noble Hero is Killed by an Asteroid





